Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495602

RESUMO

Development and homeostasis of the epidermis are governed by a complex network of sequence-specific transcription factors and epigenetic modifiers cooperatively regulating the subtle balance of progenitor cell self-renewal and terminal differentiation. To investigate the role of histone H2A deubiquitinase 2A-DUB/Mysm1 in the skin, we systematically analyzed expression, developmental functions, and potential interactions of this epigenetic regulator using Mysm1-deficient mice and skin-derived epidermal cells. Morphologically, skin of newborn and young adult Mysm1-deficient mice was atrophic with reduced thickness and cellularity of epidermis, dermis, and subcutis, in context with altered barrier function. Skin atrophy correlated with reduced proliferation rates in Mysm1-/- epidermis and hair follicles, and increased apoptosis compared with wild-type controls, along with increases in DNA-damage marker γH2AX. In accordance with diminished α6-Integrinhigh+CD34⁺ epidermal stem cells, reduced colony formation of Mysm1-/- epidermal progenitors was detectable in vitro. On the molecular level, we identified p53 as potential mediator of the defective Mysm1-deficient epidermal compartment, resulting in increased pro-apoptotic and anti-proliferative gene expression. In Mysm1-/-p53-/- double-deficient mice, significant recovery of skin atrophy was observed. Functional properties of Mysm1-/- developing epidermis were assessed by quantifying the transepidermal water loss. In summary, this investigation uncovers a role for 2A-DUB/Mysm1 in suppression of p53-mediated inhibitory programs during epidermal development.


Assuntos
Endopeptidases/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Atrofia , Endopeptidases/genética , Epiderme/patologia , Expressão Gênica , Genótipo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Células-Tronco/metabolismo , Transativadores , Proteína Supressora de Tumor p53/genética , Proteases Específicas de Ubiquitina
2.
FASEB J ; 32(4): 1957-1968, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203593

RESUMO

Histone modifications critically contribute to the epigenetic orchestration of bone homeostasis-in part, by modifying the access of transcription factors to specific genes involved in the osteogenic differentiation process of bone marrow mesenchymal stem cells (MSCs) and osteoblasts. Based on our previous finding that histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53 axis in hematopoiesis and tissue development, we analyzed the molecular basis of the skeletal phenotype of Mysm1-deficient mice and dissected the underlying p53-dependent and -independent mechanisms. Visible morphologic, skeletal deformations of young Mysm1-deficient mice-including a kinked and truncated tail and shortened long bones-were associated with osteopenia of long bones. On the cellular level, Mysm1-deficient primary osteoblasts displayed reduced potential to differentiate into mature osteoblasts, as indicated by decreased expression of osteogenic markers. Reduced osteogenic differentiation capacity of Mysm1-deficient osteoblasts was accompanied by an impaired induction of osteogenic transcription factor Runx2. Osteogenic differentiation of Mysm1-/- MSCs, however, was not compromised in vitro. In line with defective hematopoietic development of Mysm1-deficient mice, Mysm1-/- osteoclasts had reduced resorption activity and were more prone to apoptosis in TUNEL assays. Skeletal alterations and osteopenia of Mysm1-deficient mice were phenotypically completely rescued by simultaneous ablation of p53 in p53-/-Mysm1-/- double-deficient mice-although p53 deficiency did not restore Runx2 expression in Mysm1-/- osteoblasts on the molecular level but, instead, enhanced proliferation and osteogenic differentiation of MSCs. In summary, our results demonstrate novel roles for Mysm1 in osteoblast differentiation and osteoclast formation, resulting in osteopenia in Mysm1-deficient mice that could be abrogated by the loss of p53 from increased osteogenic differentiation of Mysm1-/-p53-/- MSCs.-Haffner-Luntzer, M., Kovtun, A., Fischer, V., Prystaz, K., Hainzl, A., Kroeger, C. M., Krikki, I., Brinker, T. J., Ignatius, A., Gatzka, M. Loss of p53 compensates osteopenia in murine Mysm1 deficiency.


Assuntos
Doenças Ósseas Metabólicas/genética , Endopeptidases/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Endopeptidases/deficiência , Endopeptidases/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Transativadores , Proteína Supressora de Tumor p53/metabolismo , Proteases Específicas de Ubiquitina
3.
Oncotarget ; 8(40): 67287-67299, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978033

RESUMO

Histone modifying enzymes, such as histone deacetylases (HDACs) and polycomb repressive complex (PRC) components, have been implicated in regulating tumor growth, epithelial-mesenchymal transition, tumor stem cell maintenance, or repression of tumor suppressor genes - and may be promising targets for combination therapies of melanoma and other cancers. According to recent findings, the histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue differentiation in mice, in part by modulating DNA-damage responses in stem cell and progenitor compartments. Based on the identification of alterations in skin pigmentation and melanocyte specification in Mysm1-deficient mice, we hypothesized that MYSM1 may be involved in melanoma formation. In human melanoma samples, expression of MYSM1 was increased compared with normal skin melanocytes and nevi and co-localized with melanocyte markers such as Melan-A and c-KIT. Similarly, in melanoma cell lines A375 and SK-MEL-28 and in murine skin, expression of the deubiquitinase was detectable at the mRNA and protein level that was inducible by growth factor signals and UVB exposure, respectively. Upon stable silencing of MYSM1 in A375 and SK-MEL-28 melanoma cells by lentivirally-mediated shRNA expression, survival and proliferation were significantly reduced in five MYSM1 shRNA cell lines analyzed compared with control cells. In addition, MYSM1-silenced melanoma cells proliferated less well in softagar assays. In context with our finding that MYSM1 bound to the c-MET promoter region in close vicinity to PAX3 in melanoma cells, our data indicate that MYSM1 is an epigenetic regulator of melanoma growth and potentially promising new target for tumor therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...